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Abstract. An analogy is presented between periodic persistent currents in mesoscopic rings and staggerings
of gamma energy transitions from some nuclear high-spin states. Various sources of damping of the expected
periodic structures in both physical systems are compared. This discussion provides, in the nuclear case,
a tentative explanation of the scarcity of such staggerings, their appearance near 150Gd and the existence
of a spin-window for their observation.

PACS. 21.10.Re Collective levels and giant resonances – 21.60.Ev Collective models – 21.60.Jz Hartree-
Fock and random-phase approximations

1 Introduction

Aharonov and Bohm [1] have revealed some unexpected
features of the phase of quantal wavefunctions. They have
proven in particular the physical relevance of electromag-
netic potentials in quantum mechanics, upon considering
the phase shift experienced by a charged particle encir-
cling an infinitely long solenoid (i.e. within a region where
the magnetic field is vanishing while the vector potential
is not). But apart from that fundamental and spectacu-
lar result, they have drawn the physicist’s attention on
the phase of a wavefunction describing the motion of a
charged particle. With a proper use of the boundary con-
ditions satisfied by the wavefunctions, this phase leads to
amusing consequences such as in the two following physi-
cal systems which will be discussed below.

In recent years, considerable experimental develop-
ments have taken place in two totally disconnected do-
mains of microscopic physics. One is opened by the avail-
ability of conductor or semi-conductor rings whose diame-
ter is of the order of the micron, obtained by using various
advanced techniques (such as electron beam microlitho-
graphic techniques or molecular beam epitaxy). At the
same time, important progresses have been made in the
detection of extremely small variations of the magnetic
flux, such as those resulting from the magnetization pro-
voked by an electric current of the order of the nanoam-
pere in such a ring. They take advantage of the develop-
ment of the SQUID technique (Superconducting Quantum
Interference Devices). For the litterature concerning such
instrumental developments we refer for instance to [2-3]. It
has then been possible [2] to measure persistent currents in

an assembly of 107 disconnected copper rings of this type
when submitted to a magnetic field (of the order of 10 G in
[2]) and more recently one has found similar results with
a single gold loop using a very high sensitivity SQUID
[4]. In another experiment [3] one has developped on the
same chip a single GaAs-AlGaAS semiconductor loop and
its SQUID measuring device to find qualitatively the same
results as in the previous experiments performed with con-
ductor rings. As an important result one has found that
the measured currents are periodic with respect to the
magnetic flux (with a period related with the elementary
quantum of flux Φ = h/e introduced in [1]). These exper-
imental facts have been searched for as manifestations of
the Aharonov-Bohm phase [1].

The second experimental tour de force which we want
to mention for our purpose here, has emerged from the
development in recent years of gamma 4π detector arrays
having both a high intrinsic efficiency and a high gran-
ularity (namely at present the EUROBALL and GAM-
MASPHERE detectors, in Europe and in the USA respec-
tively). The combination of these two characteristics (plus
some further instrumental niceties as e.g. anti-Compton
filter devices, advanced microelectronical engineering and
data handling) have led to very selective detectors able to
disentangle rather minute effects out of background (typi-
cally capable of sorting out spectroscopic properties asso-
ciated with some per mil of the total reaction cross section
in heavy ion reactions on heavy targets). One of the great
achievement of these arrays has been to decipher the re-
sponse of nuclei to very fast rotations (very fast being
understood here as close to the critical angular velocity
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regime leading to a centrifugal disassembly) allowing then
the nucleus to assume very deformed shapes (such as in the
so-called superdeformed states). The deexcitation gamma
spectra of such states exhibit roughly a linear dependence
on the total angular momentum I. This is typical of a ro-
tating charge distribution. Yet, it has been shown recently
[5] that in a limited number of superdeformed rotational
bands the gamma transition energies exhibit a regular pat-
tern of staggering around a smoothly varying bulk part
(i.e. very small deviations, of some tenth of a keV, with
an alternate sign above a smooth polynomial behaviour in
I). This phenomenon found in some nuclear regions [5-8]
has been confirmed in some cases with an independent set
of data [8] or infirmed upon redoing the experiment with
a better gamma detector array [9]. At any rate, it seems
undoubtedly present near and in the 149Gd nucleus for
some superdeformed bands [5, 8].

By studying the currents occuring in such rotating sys-
tems and out of the close relationship between the currents
and the phases of wavefunctions, we propose in this pa-
per to consider this staggering phenomenon as being in
a very close analogy with the persistent electric currents
measured in mesoscopic rings.

2 Persistent currents in mesoscopic rings

We will schematically discuss here the the physics involved
in the mesoscopic ring experiments by making use of a
simplified 1D model for the mesoscopic ring, discussing
later some properties of a real ring, relevant to our limited
purpose. This model introduced by Hund [10] as early as
1938, describes the motion of a free electron moving bal-
istically in the ring (i.e. without collisions with the other
particles included in the ring, and in particular with other
electrons). This ideal conduction phenomenon has been
shown theoretically [11] and experimentally [12] to exist
indeed in regimes where the electrons perform essentially
elastic scatterings on the impurities of the solid and very
few inelastic scattering with the phonons. In such cases,
the quantal phase coherence length appears to be order
of magnitudes larger than the actual (elastic) mean free
path and to be at least of the order of the characteristic
length of the studied mesoscopic system. Finally we would
like to emphasize that for the analogy which we are go-
ing to make, it suffices to analyze the motion of a single
electron without entering in the complicated description
of how much cooperative effects of several electrons would
affect e.g. the period of the persistent current. This allows
us to describe qualitatively the quantal electronic motion
within the following simplistic approach.

The energy of an electron in a constant magnetic field
B whose vector potential is A, is written

E = (p− eA)2/2m. (1)

For a free electronic motion on a circle of radius R, whose
plane is perpendicular to B, the eigenfunctions of the

above hamiltonian is defined, in terms of an azimuthal
angle θ, as

χn(θ) ∝ exp

[
i

(
knRθ +

∫ θ

0

(
eA(ϕ)R

h̄

)
dϕ

)]
. (2)

The boundary condition over one loop yields the following
quantization of the wave number kn [13]

2πRkn +
eΦ

h̄
= 2πn, (3)

n being an integer number, from where one deduces read-
ily the quantized electron energy

E =
h̄2

2mR2
(n− Φ/Φ0)2 (4)

where Φ is the flux of B through the surface of the ring. For
a given positive value of Φ, the ground state n-value is the
integer number closest to [Φ/Φ0] or [Φ/Φ0] + 1, where [x]
stands for the integral part of x. When Φ varies therefore,
n raises in steps. The electric current intensity which is
equal to −∂E/∂Φ and thus proportional to n− (Φ/Φ0), is
a periodic function of Φ with Φ0 as a period.

3 Coupling a global rotation with a simple
intrinsic vortical motion

The well known formal analogy between the equations of
motion of charged particles in a stationary uniform mag-
netic field and of massive particles in a rotating reference
frame, suggests that we search now for a possible nuclear
analog of the above described physical system. Let us con-
sider high spin nuclear states as experimentally studied
currently with the large gamma-ray multidetector arrays
presented in Sect. 1. Recently it has been proposed [14]
that their collective spectra could be interpreted in terms
of the coupling of a global rotation with a uniform intrin-
sic vortical motion as in Riemann-Chandrasekhar S-type
ellipsoids [15]. The corresponding vortical motion may be
regarded as a global rotation within the sphere obtained
by stretching, upon conserving the volume, the coordi-
nates of an ellipsoid along its principal axes. Just as for
the global rotation, this motion is indeed associated with
a single angle variable θ and with the quantity ω = dθ/dt,
which we call the angular velocity of the stretched rota-
tion. This motion may be superimposed with the global
rotation of an ellipsoid with an arbitrary angular velocity
Ω.

Modeling nuclear collective motions in such hydrody-
namical terms has a long history (see e.g. the entries (8)
to (13) in the reference list of [14]) even though it has
not been yet fully studied microscopically with state of
the art mean field theories. The latter would correspond
to generalized “cranking” approaches stemming from the
analogy between canonical point-transformations in classi-
cal mechanics and unitary (Thouless) transformations eiS
in quantum mechanics, with an operator S linear in the
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momentum p [16]. One would then solve the variational
problem

δ〈H −Ω.I− ω.J〉 = 0 (5)

where I is the total angular momentum operator and J
the so-called Kelvin circulation operator (which is simply
the orbital angular momentum operator after stretching
in both r and p [16]). In the particular case of S-type el-
lipsoids, the intrinsic vortical angular velocity vector ω is
collinear with the angular velocity vector Ω of the global
rotation. The solutions of (5) are thus functions of Ω and
ω, the projections of the two angular velocities on their
common axis. We assume now that in some (I, J) domain,
the nuclear energy can be considered as a quadratic func-
tion of Ω and ω

E(Ω,ω) =
1
2
Aω2 +BωΩ +

1
2
CΩ2 (6)

where A, B and C are relevant moments of inertia. It
is easy to obtain a hamiltonian operator associated with
this energy expression. One first makes use of the standard
Hamilton equations

Ω = ∂E/∂I; ω = ∂E/∂J (7)

from which one gets

I = CΩ +Bω; J = BΩ +Aω. (8)

Upon inverting these equations and inserting the resulting
angular velocities as functions of I and J , one obtains an
energy which is quadratic in I and J

E(I, J) =
1

AC −B2

(
1
2
AI2 −BIJ +

1
2
CJ2

)
. (9)

After some rearrangements of terms, prompted by the de-
scription of the motion at given values of I, and after
replacing the quantities I and J , canonically conjugated
to the angles Θ and θ of which Ω and ω are the time
derivatives, by the corresponding operators, one readily
obtains

Ĥ(Î, Ĵ) =
Î2

2C
+

1
2

C

AC −B2

(
Ĵ− B

C
Î
)2

. (10)

Describing the properties of nuclear stationary states
which are eigenstates of Î2, one may disregard the opera-
tor dependence in Î of Ĥ(Î, Ĵ), yielding thus the following
equations for the collective intrinsic motion wavefunction
Φ(I, J), corresponding to an eigenstate of the operator Ĵ2

1
2

C

AC −B2
(Ĵ−B ~Ωeff )2Φ(I, J) = δ(I, J)Φ(I, J)

Ĵ2Φ(I, J) = J(J + h̄)Φ(I, J)
(11)

where Ωeff = I/C has the physical meaning of an effective
rotational frequency, while δ(I, J) stands for the energy
excess above the classical estimate E′(I) = I2/2C, for
the yrast state energy (where as usual in nuclear physics,

Fig. 1. Illustrative example of collective energies E(I, J), pic-
tured as dashed parabolas, as functions of a continuous variable
I for quantized values of J : J0h̄, (J0 + 2)h̄, ... , where J0 is an
even non-negative integer number. The parabolic envelope of
these energies, corresponding to the classical yrast energy, is
also drawn. The periodic (in I) difference between the quantal
and the classical yrast lines, δ(I, J), is represented as the black
area on the Figure

“yrast state” means the state whose energy is minimal at
a given value of I).

In the above also, “classical” means that we have con-
sidered J as a continuous variable. In fact, it is important
to note that J is quantized as an orbital angular momen-
tum. This property is easily demonstrated by calculating
the commutator between two components of J. It is also
a direct consequence of the matching property after one
loop of the wavefunction depending on θ which is canoni-
cally conjugated with J. This is a one-to-one transcription
of the boundary condition problem yielding (3). It is clear
that such a quantization of J2 makes our approach cru-
cially different from the one of Rosensteel [17] even though
our definition of the operator J is obviously identical. On
the other hand, we have assumed here that we are in a
“fast rotation” regime (i.e. I and J À h̄ so that we have
replaced e.g. J(J + h̄) by J2), noting that releasing this
restriction would slightly complicate the mathematical ex-
pressions without altering the main conclusions (see the
discussion of [16]).

The parabolic behaviour of the energy as a function
e.g. of I for a given quantized value of J, the envelope of
such curves and the periodic (in I) difference between the
latter and the quantized (in J) yrast energy are illustrated
on Fig. 1.

4 Analogy between idealized currents in
mesoscopic rings and gamma transitions
between states belonging to a
super-deformed rotational band

The analogy between the physical systems described in the
two previous sections may thus be detailed as follows. The
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nuclear global rotation plays the role of the constant mag-
netic field while the intrinsic vortical mode corresponds to
the circular displacement of the point charge. In both cases
the motions are described by a single angular variable θ.

The first of the equations (11) establishes formally the
above analogy between the motion of an electron in a per-
manent magnetic field B, whose wavefunction is an eigen-
state of the projection on the B-direction of the orbital
momentum l, on one hand with the intrinsic vortical mo-
tion of some nuclear matter enclosed in a rotating con-
tainer, whose wavefunction is an eigenstate of I2 and J2,
on the other hand. Now, I, or a quantity proportional to
it having the dimensions of an angular velocity called here
Ωeff , will be associated with a quantity proportional to
a uniform field B, while J will be associated with l. The
former analogy (Ωeff ∝ B) is rather well-known when de-
scribing the rotation of a charged point particle, or the
global rotation of a fluid, i.e. without intrinsic vortical
motion. The inertia parameter B, generating the coupling
of the two collective modes of the fluid, plays the role of
the charge of the particle coupling its motion to the mag-
netic field. At a given value of I the nuclear energy δ(I, J)
defined in the first (11), may be written as

δ(I, J) =
h̄2C

2(AC −B2)
(j − Ψ/Ψ0)2 (12)

with j = J
h̄ ; Ψ = B

C I; Ψ0 = h̄.
Such an expression is manifestly of the same nature as

what has been obtained for the mesoscopic ring in (4). The
analog of the ground state in this case is the yrast state.
Its energy δ(I, J), relative to the base line E′(I), presents
the property of being raised by steps due to the quantized
character of J , similar to what has been found for the
electron. It may be noted that in the mesoscopic ring case,
the quantized energy of (4) can also be represented by
the drawing made in Fig. 1, where the abscissa represents
now the magnetic flux and upon replacing the parabolic
envelope by the zero energy horizontal line.

The analog of the electric current intensity is the deriva-
tive of with respect to I or equivalently to the “flux” Ψ . It
represents in the nuclear case, the fluctuating part of the
gamma transition energy between two yrast states having
neighbouring values of I. As does the electric current in
mesoscopic rings, it will exhibit periodic jumps as a func-
tion of I, resulting thus in a staggering of these transition
energies. This is indeed observed in the data pertaining to
the gamma deexcitation of some superdeformed nuclear
states in 149Gd [5], 148Gd and 148Eu [8] and possibly as
well in the 132Ce region [6]. Its interpretation as result-
ing from the quantization of an intrinsic vortical mode
has been already tentatively proposed in reference 14. Al-
ternative descriptions have been proposed (C4 symmetry
[18], collective kinetic energy with fourth order terms in
the angular momentum [19], band mixing within a pro-
jected shell model approach [20] or within some versions of
the Interacting Boson Model [21, 22]). In the former case
however, it does not seem to be grounded on any micro-
scopic calculations for the hexadecapole deformation [23].
In turn, the difficulty met, in particular, by our tentative

explanation [14], is its seemingly very general character
which does not fit with the scarcity of such a staggering.
Moreover, one has also to provide a rationale for the some-
what limited “spin window” in which this phenomenon
takes place. The analogy sketched here may be useful to
understand these two facts.

5 Discussion

Let us release some among the above performed simpli-
fications for both physical systems. We will proceed by
considering first the ring physics and then transpose the
discussion to the context of its nuclear analog. As a first
point of discussion, we note that actual rings have indeed
a finite cross-section. This finiteness entails a distribution
of the ring radius R and thus of the flux Φ. The existence
of periodic persistent currents would still prevail, provided
that the fluctuation ∆R of R is small with respect to its
average value R̄, to which corresponds an average flux Φ̄,
namely

2Φ̄∆R/R̄¿ Φ0. (13)

In the nuclear case, the role of R is played by the ra-
tio x = B/C which is mostly deformation dependent. An
equivalent to the distribution in R is the spread in nuclear
shapes resulting from the coupling of nuclear rotations and
vibrations. To estimate the importance of this effect, we
will model the superdeformed nucleus as an axially sym-
metrical ellipsoid of axis ratio q. From the semiclassical es-
timate of [14] for B and C, one obtains x = 2/(q+1/q), to
the lowest order in h̄. The condition (13) for the existence
of periodic currents in closed rings would then become in
the nuclear case

|∆q|
q
¿ q

h̄

2I
(1 + 1/q2)2

(1− 1/q2)
(14)

For given values of q and of its fluctuation ∆q, the valid-
ity of such a condition if met at some value of the spin
I, would disappear upon sufficiently increasing I. On the
other hand, it appears that ∆q increases when decreas-
ing I (due to the disappearance of the inner barrier in
the rare-earth region whose existence implies a sufficient
angular velocity, or to an increase of the coupling to nor-
mally deformed states in the Hg region [24]). Both limits
might therefore explain the observed “spin-window” for
the staggering phenomenon.

It is worth noting now that the above condition for
the existence of a staggering should be only marginally
met in most nuclei. For instance, assuming that I = 30h̄
and q = 1.8, one requires that ∆q should be much smaller
than 0.13, which is not very large indeed as compared with
the calculated widths of vibrational intrinsic states for su-
perdeformed states in some Hg [25] or Gd [26] isotopes. In
the latter case, for instance, one has estimated in reference
26, the quadrupole moment fluctuation (

√
〈Q2〉 − 〈Q〉2) in

the vicinity of 150Gd to generally correspond to a fluctua-
tion of the parameter q of the order of precisely 0.13 (for
q ∼ 1.8 and A ∼ 150).
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Clearly the estimate of (14) is purely semiclassical, it
indicates nevertheless that in most cases, the condition
for a staggering should not be met. The actual existence
of a staggering mode should thus correspond to a signifi-
cant local deviation from the average values of ∆q due to
structural effects originating, for instance, from a sudden
increase of the axial quadrupole mass parameter M(Q)
in the relevant deformation range. As a matter of fact,
recent perturbative calculations of M(Q) have been per-
formed [26] for the 146,148,150,152,154Gd isotopes. Whereas
they show no significant structure in the superdeformed
region in all cases but for 150Gd, they yield for the lat-
ter a dramatic increase of M(Q) (by a factor larger than
50 near the maximum) exactly in phase with the local
minimum. This yields a lowering of the quadrupole mo-
ment fluctuation by a factor of three roughly, allowing
thus the condition of (14) to be almost met. It is further-
more argued in [26] that, contrarily to the other isotopes
studied there, upon increasing the angular momentum in
148Gd, one retrieves a situation which is very much com-
parable with what we have discussed for 149Gd at zero
angular momentum. This might provide a qualitative ex-
planation for the staggerings observed in 149Gd, 148Gd and
148Eu.

In the mesoscopic ring physics, it is known that the
existence of transverse modes, allowed by the 3D charac-
ter of a real ring, results also in a damping of the periodic
current. As a matter of fact, one must not consider a sin-
gle circular orbit but a bunch of them corresponding to
different quantal states for the transverse electron energy.
In the high-spin limit of the nuclear case, the 3D nature
of rotations is expected to generate a wobbling-like mo-
tion [27]. The model hamiltonian must be modified so as
to incorporate it. In [28], we have generalized the quan-
tal treatment of the precession motion described in [27]
for the case of global rotations alone, in the limit where
the I and J momenta have one projection on a principal
axis which is much larger than the others. In this case one
creates for each value of the quantum numbers I and J ,
a spectrum of boson excitations. It has also been noted
in [28] that the zero-point wobbling motion does renor-
malize the energy resulting thus in a modification of the
parameters A, B and C in the quadratic expression of the
energy (9). Incidentally the latter effect may also yield a
substantial deviation from the quadratic character of the
collective energy itself which has been assumed here. This
simplification corresponds indeed to an assumption on the
constancy of the inertia tensor with respect to the total
angular momentum, which is roughly substantiated by ex-
perimental data in most SD bands but in no case exactly
fulfilled either.

The description of the two physical systems which we
have made here, is of a purely kinetic nature. A more
complete description of them would require to add to the
collective kinetic energy, terms representing the interac-
tion of this mode with the rest of the system. In the
mesoscopic ring case one could add a potential V (θ) to
take into account approximately the elastic collisions of
the electrons with the solid impurities. A treatment of the

inelastic scattering on the phonons of the solid would be
more complicated.

Similarly in the nuclear case, we have neglected in par-
ticular the coupling with other collective modes, excepted
the global rotation. As a matter of fact, our description
of the intrinsic vortical mode conserves the Kelvin circu-
lation J. Such an approximation depicts a frictionless nu-
clear matter flow which conserves the current. This could
be improved, for instance, by introducing a complex po-
tential in the hamiltonian of (10) whose imaginary part
would describe the energy transfer from the studied collec-
tive mode to the others, in cases where a full quantal treat-
ment would prove to be beyond reach. Taking furthermore
into account the couplings with non-collective modes, one
could imply the concept of nuclear viscosity whose assess-
ment, however, is a rather difficult task and is obviously
contingent upon the considered process. Intrinsic vortical
modes being essentially shape-conserving, should not yield
much of one-body viscosity, which is mostly generated in
other processes by the moving nuclear surface. However it
is impossible to rule out some residual viscosity effect, in
particular of two-body character, providing thus a further
damping of the discussed staggering phenomenon. More-
over in [14], a manifestation of the J-mixing has been
advocated to explain the observed intraband transition
within e.g. the yrast band. Even though the experimental
data cannot specify the exact amount of such a mixing,
however they clearly prove its existence.

6 Conclusions

A possible analogy between two seemingly very different
physical systems has been established. The discussion of
the physics of the mesoscopic ring has been only slightly
touched here. Clearly we use this analogy to better un-
derstand our recently proposed description of very high
spin in terms of a coupling of global rotations with in-
trinsic vortical modes. While this approach seemed quite
general in nature, it remained to explain why the gamma
transition energy staggering which may be deduced from
it, was so rarely found in relevant nuclear spectroscopic
data. The somewhat elusive character of this alleged man-
ifestation of the nuclear intrinsic vortical motion is mir-
rored by the experimental difficulty of exhibiting persis-
tent currents in mesoscopic rings. A major result of our
approach, is the qualitatively explanation of this experi-
mental scarcity, without ruling out the possibility of its
accidental occurence (as near 150Gd), as resulting from
various damping mechanisms (stemming from a deforma-
tion distribution, quantal wobbling modes and the two-
body viscosity). Furthermore a tentative explanation for
the existence of a “spin-window” for the staggering pat-
tern has been proposed. It is clear that the general argu-
ments presented here, call for more specific microscopic es-
timates. In general such intrinsic vortical currents are su-
ficiently damped, so that they do not manifest themselves
through the considered staggering. This does not preclude,
a priori, the widely spread character of their existence.
On the contrary, demonstrating their relevance through
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such a scarce phenomenon might be the telltale indica-
tor of their general presence. However, it remains still to
qualitatively explain within our framework why such stag-
gerings are present in some superdeformed bands and not
in others within the same nucleus (possibly through the
explicit coupling of the intrinsic vortical modes with the
quasiparticle degrees of freedom).
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